3.5.82 \(\int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^n \, dx\) [482]

3.5.82.1 Optimal result
3.5.82.2 Mathematica [A] (verified)
3.5.82.3 Rubi [A] (verified)
3.5.82.4 Maple [F]
3.5.82.5 Fricas [F]
3.5.82.6 Sympy [F]
3.5.82.7 Maxima [F]
3.5.82.8 Giac [F]
3.5.82.9 Mupad [F(-1)]

3.5.82.1 Optimal result

Integrand size = 29, antiderivative size = 259 \[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^n \, dx=\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^{1+n}}{8 b c^3 (1+n) \sqrt {1-c^2 x^2}}+\frac {i 2^{-2 (3+n)} e^{-\frac {4 i a}{b}} \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^n \left (-\frac {i (a+b \arcsin (c x))}{b}\right )^{-n} \Gamma \left (1+n,-\frac {4 i (a+b \arcsin (c x))}{b}\right )}{c^3 \sqrt {1-c^2 x^2}}-\frac {i 2^{-2 (3+n)} e^{\frac {4 i a}{b}} \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^n \left (\frac {i (a+b \arcsin (c x))}{b}\right )^{-n} \Gamma \left (1+n,\frac {4 i (a+b \arcsin (c x))}{b}\right )}{c^3 \sqrt {1-c^2 x^2}} \]

output
1/8*(a+b*arcsin(c*x))^(1+n)*(-c^2*d*x^2+d)^(1/2)/b/c^3/(1+n)/(-c^2*x^2+1)^ 
(1/2)+I*(a+b*arcsin(c*x))^n*GAMMA(1+n,-4*I*(a+b*arcsin(c*x))/b)*(-c^2*d*x^ 
2+d)^(1/2)/(2^(6+2*n))/c^3/exp(4*I*a/b)/((-I*(a+b*arcsin(c*x))/b)^n)/(-c^2 
*x^2+1)^(1/2)-I*exp(4*I*a/b)*(a+b*arcsin(c*x))^n*GAMMA(1+n,4*I*(a+b*arcsin 
(c*x))/b)*(-c^2*d*x^2+d)^(1/2)/(2^(6+2*n))/c^3/((I*(a+b*arcsin(c*x))/b)^n) 
/(-c^2*x^2+1)^(1/2)
 
3.5.82.2 Mathematica [A] (verified)

Time = 0.65 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.74 \[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^n \, dx=\frac {d \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^n \left (\frac {8 a+8 b \arcsin (c x)}{b+b n}+i 4^{-n} e^{-\frac {4 i a}{b}} \left (\frac {(a+b \arcsin (c x))^2}{b^2}\right )^{-n} \left (\left (\frac {i (a+b \arcsin (c x))}{b}\right )^n \Gamma \left (1+n,-\frac {4 i (a+b \arcsin (c x))}{b}\right )-e^{\frac {8 i a}{b}} \left (-\frac {i (a+b \arcsin (c x))}{b}\right )^n \Gamma \left (1+n,\frac {4 i (a+b \arcsin (c x))}{b}\right )\right )\right )}{64 c^3 \sqrt {d \left (1-c^2 x^2\right )}} \]

input
Integrate[x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^n,x]
 
output
(d*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^n*((8*a + 8*b*ArcSin[c*x])/(b + b 
*n) + (I*(((I*(a + b*ArcSin[c*x]))/b)^n*Gamma[1 + n, ((-4*I)*(a + b*ArcSin 
[c*x]))/b] - E^(((8*I)*a)/b)*(((-I)*(a + b*ArcSin[c*x]))/b)^n*Gamma[1 + n, 
 ((4*I)*(a + b*ArcSin[c*x]))/b]))/(4^n*E^(((4*I)*a)/b)*((a + b*ArcSin[c*x] 
)^2/b^2)^n)))/(64*c^3*Sqrt[d*(1 - c^2*x^2)])
 
3.5.82.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 198, normalized size of antiderivative = 0.76, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {5224, 4906, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^n \, dx\)

\(\Big \downarrow \) 5224

\(\displaystyle \frac {\sqrt {d-c^2 d x^2} \int (a+b \arcsin (c x))^n \cos ^2\left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right ) \sin ^2\left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )d(a+b \arcsin (c x))}{b c^3 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 4906

\(\displaystyle \frac {\sqrt {d-c^2 d x^2} \int \left (\frac {1}{8} (a+b \arcsin (c x))^n-\frac {1}{8} (a+b \arcsin (c x))^n \cos \left (\frac {4 a}{b}-\frac {4 (a+b \arcsin (c x))}{b}\right )\right )d(a+b \arcsin (c x))}{b c^3 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {d-c^2 d x^2} \left (\frac {(a+b \arcsin (c x))^{n+1}}{8 (n+1)}+i b 2^{-2 (n+3)} e^{-\frac {4 i a}{b}} (a+b \arcsin (c x))^n \left (-\frac {i (a+b \arcsin (c x))}{b}\right )^{-n} \Gamma \left (n+1,-\frac {4 i (a+b \arcsin (c x))}{b}\right )-i b 2^{-2 (n+3)} e^{\frac {4 i a}{b}} (a+b \arcsin (c x))^n \left (\frac {i (a+b \arcsin (c x))}{b}\right )^{-n} \Gamma \left (n+1,\frac {4 i (a+b \arcsin (c x))}{b}\right )\right )}{b c^3 \sqrt {1-c^2 x^2}}\)

input
Int[x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^n,x]
 
output
(Sqrt[d - c^2*d*x^2]*((a + b*ArcSin[c*x])^(1 + n)/(8*(1 + n)) + (I*b*(a + 
b*ArcSin[c*x])^n*Gamma[1 + n, ((-4*I)*(a + b*ArcSin[c*x]))/b])/(2^(2*(3 + 
n))*E^(((4*I)*a)/b)*(((-I)*(a + b*ArcSin[c*x]))/b)^n) - (I*b*E^(((4*I)*a)/ 
b)*(a + b*ArcSin[c*x])^n*Gamma[1 + n, ((4*I)*(a + b*ArcSin[c*x]))/b])/(2^( 
2*(3 + n))*((I*(a + b*ArcSin[c*x]))/b)^n)))/(b*c^3*Sqrt[1 - c^2*x^2])
 

3.5.82.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 4906
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b 
_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin[a + b*x 
]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IG 
tQ[p, 0]
 

rule 5224
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^ 
2)^(p_.), x_Symbol] :> Simp[(1/(b*c^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x 
^2)^p]   Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x], x, 
a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] 
 && IGtQ[2*p + 2, 0] && IGtQ[m, 0]
 
3.5.82.4 Maple [F]

\[\int x^{2} \sqrt {-c^{2} d \,x^{2}+d}\, \left (a +b \arcsin \left (c x \right )\right )^{n}d x\]

input
int(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^n,x)
 
output
int(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^n,x)
 
3.5.82.5 Fricas [F]

\[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^n \, dx=\int { \sqrt {-c^{2} d x^{2} + d} {\left (b \arcsin \left (c x\right ) + a\right )}^{n} x^{2} \,d x } \]

input
integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^n,x, algorithm="frica 
s")
 
output
integral(sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a)^n*x^2, x)
 
3.5.82.6 Sympy [F]

\[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^n \, dx=\int x^{2} \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{n}\, dx \]

input
integrate(x**2*(-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x))**n,x)
 
output
Integral(x**2*sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x))**n, x)
 
3.5.82.7 Maxima [F]

\[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^n \, dx=\int { \sqrt {-c^{2} d x^{2} + d} {\left (b \arcsin \left (c x\right ) + a\right )}^{n} x^{2} \,d x } \]

input
integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^n,x, algorithm="maxim 
a")
 
output
integrate(sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a)^n*x^2, x)
 
3.5.82.8 Giac [F]

\[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^n \, dx=\int { \sqrt {-c^{2} d x^{2} + d} {\left (b \arcsin \left (c x\right ) + a\right )}^{n} x^{2} \,d x } \]

input
integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^n,x, algorithm="giac" 
)
 
output
integrate(sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a)^n*x^2, x)
 
3.5.82.9 Mupad [F(-1)]

Timed out. \[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^n \, dx=\int x^2\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^n\,\sqrt {d-c^2\,d\,x^2} \,d x \]

input
int(x^2*(a + b*asin(c*x))^n*(d - c^2*d*x^2)^(1/2),x)
 
output
int(x^2*(a + b*asin(c*x))^n*(d - c^2*d*x^2)^(1/2), x)